

**VOLUME 25 #4 OKTOBER 2025** 



Bees are fascinating – for biologists and ethicists alike. Long considered somewhat niche in animal ethics for being too small, too 'insect', or too much a superorganism, they challenge our categories through their complex social behaviour.

The beehive has long served as a model for imagining the good political order, community, and life in common. For food and agricultural ethics, bees are highly relevant: often called the world's third most important livestock species, they also reveal how agriculture intertwines with natural processes and cultural practices. Finally, they are both indicators of our relationship with nature and reminders of our responsibilities within it.

This newsletter features three contributions on these themes: Jürgen Tautz shares his lifelong fascination with honeybees and underlines their crucial role in biodiversity and food security. Nicole Karafyllis develops an 'ethics of beekeeping,' focusing on the wellbeing of the colony and critically examining the language we use when speaking about bees. Simon Meisch, Scott Bremer, Etienne Dunn-Sigouin and Manuel Hempel show how climate change is reshaping beekeeping as a social practice – from techniques and rhythms to cultural meanings. I am also pleased to introduce two of our members: Rachel Ankeny, newly appointed Professor of Philosophy at Wageningen, and Tristan Katz, who has successfully completed his PhD on wildlife ethics.

This newsletter also brings you news of the upcoming General Conference 2026 in Cappadocia, which will explore the ethical challenges of AI and digitalisation in farming and food – and warmly invite you to submit your abstracts and take part in shaping the conversation. As always, you'll also find updates from Eur-Safe's Executive Committee and news of forthcoming events.

Much like bees, we food and agricultural ethicists may sting if we must, yet it is our shared labour that produces the real sweetness: insights that nourish the future of food and agriculture.

Simon Meisch



#### **CONTENTS**

Interview with Prof. Dr Jürgen Tautz | 2

Ethical perspectives in beekeeping | 5

Bees, people and climate: Rethinking beekeeping as a social practice | 9

EurSafe 2026: Agriculture and food systems | 12

Inaugural address Rachel Ankeny | 14

PhD Tristan Katz | 15

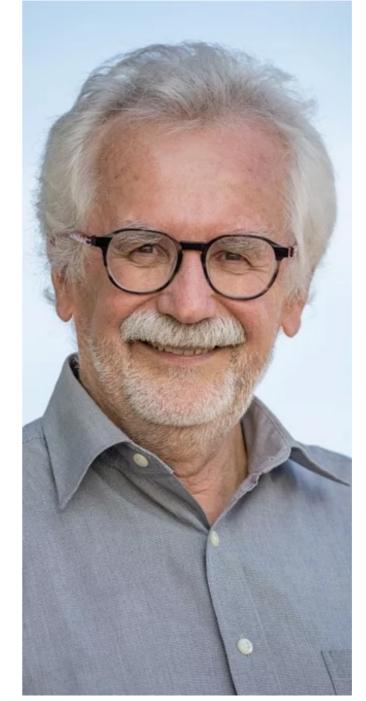
From the executive committee | 16

Conferences and symposia | 17

Contact | 18

# interview




### Interview with Prof. Dr Jürgen Tautz

#### Simon Meisch

Jürgen Tautz is a behavioural scientist, sociobiologist, and bee expert. He is a retired professor at the Biocenter of the Julius-Maximilians-University of Würzburg. He is the author of numerous publications and books (including popular science books on bees, some of which have been translated into over 20 languages), most recently *Die Sprache der Bienen* (The Language of Bees) (2021). He has received numerous awards for the popular communication of scientific content, including the Communicator Prize of the German Research Foundation in 2012.

Simon Meisch (SM): Mr Tautz, you have been working on bees for many years now. Could you describe what fascinates you most about them?

Jürgen Tautz: "My most astonishing realization: The deeper you dive into the study of bees, the more foolish you feel. When I knew nothing about bees, I thought I knew everything about them. And the more I learn about bees, the greater my wonder and desire to know even more becomes. As a child I was absolutely fascinated by honeybees. From my pocket money I bought the popular book by Karl von Frisch 'Aus dem Leben der Bienen'. Some years later, age 13 years, I could get hold of a museum insect container about honeybees that I rescued from a garbage container, the mounted bees did not look nice any longer. But this box is still a treasure for me. By then I had absolutely no idea that more than 30 years later admired Professor Martin Lindauer donated to me a honeybee colony with the comment 'you make a big mistake if you do not study honeybees'. At that time, I knew about bees not more than what most people know. To name three facts: They make honey, they can sting, and they have a fascinating way to communicate, called 'dance language'. My wife agreed to have this bee colony close to our home which gave me the chance to put a chair next to the colony whenever I had extra



time and simply watched what could be seen. This way it happened to me what everybody experiences who does not keep distance to honeybees: One is lost instantly, caught, and fascinated. An obviously unconscious long buried love surfaced fast."

#### SM: Bees are often described as the third most important livestock species. Where does their significance lie?

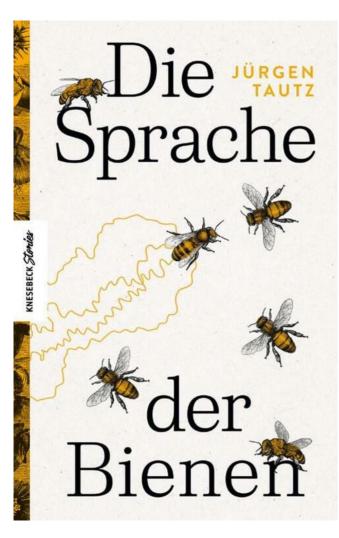
"To answer this question, we need to look back about 200 million years. At that time, green land plants were only pollinated by the wind. This is extremely inefficient. Therefore, insects like bees developed, which collect and

3

pollinate pollen. Bees are indispensable. The significance for us humans and agriculture can be expressed in numbers: One third of all food is thanks to the pollination services of bees. Without pollinators, nothing works for all types of fruits and vegetables as well as animal feed. This utmost relevance is also true for the diversity of wild vegetation."

SM: As scholars in agricultural and food ethics, we are concerned, among other things, with the well justified treatment of livestock. In doing so, we usually think of mammals rather than social insects. It is perhaps already a difficult question to ask what the moral subject is: the individual bee, or the colony (the Bien). What is your perspective, and why?

"All animals shall be treated with respect. This is also true for insects, irrespectively if we look at the individuum or at the colony, irrespectively if we address to them feelings and consciousness, or not."


SM: When considering the question of what constitutes bee-friendly beekeeping, what, in your view, are the key criteria for such practices?

"In my opinion the solution to the biggest problems in beekeeping are not in the hands of beekeepers. Beekeepers can fight against honeybee diseases and parasites like the Varroa mite. But beekeepers can do very little to nothing against the loss of biodiversity and the overwhelming use of agrochemicals. Both are extremely bad for honeybees and an endless list of other organisms."

SM: In recent years, the discussion has intensified around whether keeping honeybees leads to the displacement of wild bees. How do you position yourself in this debate? According to what criteria could such conflicts be addressed?

"The picture that emerges does not allow for clear answers. The results of studies examining a possible competition between honeybee colonies and solitary bees show negative effects of honeybees in about half of the cases, while in the other half there are either no or mixed effects in cohabitation, depending on the type of wild bees considered. A similar picture emerges when looking at a shift in vegetation composition. The results are clearer when investigating the transmission risks of diseases and parasites from honeybees to wild bees. Here, 70 % of studies have shown negative effects on wild bees. To prevent or minimize negative influences

Jürgen Tautz
Professor emeritus
Julius-Maximilians
University of Würzburg
jurgen.tautz@uni-wuerzburg.de



of kept honeybees on wild bees, it is recommended, where feasible, supporting native bee species, maintaining a sensible density of bee colonies appropriate for the region, and ensuring that the kept bee colonies are managed properly. In conclusion: it depends on the circumstances, which outcome the co-habitat of wild and honeybees has.'

SM: Beekeeping, like other agricultural sectors, is affected by climate change. Where do you see the greatest challenges for individual beekeepers and for the sector as a whole?

"The decisive meteorological factor of climate change, which brings everything else with it, is temperature. Mild winters cause significant problems for honeybees, as they prematurely break up the tightly packed winter cluster, possibly even starting flight activities before there is anything to gather. This unnecessarily costs the colony energy, which can ultimately be crucially lacking, leading to starvation as supplemental feeding by the beekeeper, however well-intended, does not help, as storage of food in winter is not part of the bees' be-

havioural repertoire. There have also been indications for years that a changed temperature pattern in spring disrupts the finely tuned synchronization that has developed over very long periods between the life cycles of pollinator insects and the flowering phase of plants, with dire consequences for the bees."

SM: The impact of globalisation on honey production has become a pressing issue. Large quantities of adulterated honey are entering the European market at low prices, placing local beekeepers under pressure. This also reflects limited consumer awareness of the effort involved in honey production. Since appeals to consumer responsibility alone may not suffice, what is your position on this debate?

"The strongest lever is in the hands of us consumers. If we buy honey from the beekeeper 'next door' and if we are willing to pay a higher price for that, the market will react as we wish. If that would lead to less quantities of honey on the market, that would be fine, because honey would then be rated again what it is: a highly valuable natural food."

SM: Mr Tautz, many thanks for taking part in this interview and sharing his thoughts with us.

#### **Photo credits**

| Page 1 | Top picture (Ratikova), Meisch (Lotte |
|--------|---------------------------------------|
|        | Ostermann)                            |

- Page 3 Jürgen Tautz (Ingo Arndt)
- Page 5 Nicole C. Karafyllis (own)
- Page 7 Basedow image: Herzog August Bibliothek Wolfenbüttel: Chodowiecki Sammlung (1-36)
- Page 8 Drawing (Val\_Iva)
- Page 9 Scott Bremer (UiB), Etienne Dunn-Sigouin (own), Manuel Hempel (own)
- Page 10 Honey comb (Filip Krstic)
- Page 11 Bee (Andreas Häuslbetz)
- Page 13 Cappadocia, Turkey (Anatols)
- Page 14 Rachel Ankeny (Guy Ackermans)
- Page 15 Tristan Katz (Ivo Wallimann-Helmer)
- Page 16 Franck Meijboom (Ed van Rijswijk); Cappadocia University (own)

## Ethical perspectives in beekeeping

Nicole C. Karafyllis



Until quite recently, bees were of no concern to ethics. Beekeepers, too, were not regarded as an ethically relevant professional group. This has changed significantly, above all due to the general rise of animal ethics (e.g. Beauchamp & Frey 2011).

In recent years, more specific approaches towards an *insect ethics* have emerged, which in my view should be assessed critically. To be sure, it makes sense to abandon the mammal as the guiding model, with its classical expressions of pain perception (pathocentrism). Yet the focus is still placed on individuals rather than on communities of life, which does not do justice to social insects such as ants and bees. Bees are exceptional, even among insects.

Furthermore, the subdivision into ever smaller fields of ethics – from environmental ethics to the narrower animal ethics, then to an even narrower insect ethics versus mammal ethics versus fish ethics, and so on – leads to a fragmentation and segregation of the question of the good. At present, ethics suffers the same fate as agriculture: segregation and fragmentation. Both are confronted with high 'production demands' from society: while farmers are expected to produce food, philosophers are expected to produce meaning and provide orientation – preferably both in a sustainable manner.

It is therefore important in ethics as well to consider larger systems and to justify their claim to protection. How, for example, can plant ethics (Kallhoff, Di Paola & Schörgenhumer 2018.) demand a 'right to flourish' for plants without at the same

Nicole C. Karafyllis Professor of Philosophy, University of Braunschweig, n.karafyllis@tu-bs.de

time taking bees into account? This is why I propose approaches originating from a more broadly conceived environmental ethics, which also integrates agricultural ethics. This includes a view of cultural landscapes and their ecological interrelations (for example, between plant and bee), and it means acknowledging the bee as both a cultural (bred) and a natural (wild) animal. For this reason, we should speak rather of an ethics of beekeeping than of a bee ethics. The implicated anthropocentric standpoint does not in any way exclude, as is often assumed, the attribution of intrinsic value to bees.

#### The ethics of beekeeping

The honeybee, unlike wild bees, is a domesticated animal within agricultural culture (apiculture). Its mode of management is beekeeping. Compared with the many scientific studies on bees, the cultural and technical practice of beekeeping is much less present in public and political awareness. A fundamental question is whether we wish to conceive of an ethics meaningful for bees based on scientific knowledge or based on craft rules and practices typical of agriculture. My advice points in the latter direction.

Beekeeping is part of agricultural practice. Ethical perspectives on 'the bee' must therefore be shaped by beekeepers themselves. This means that the beekeeper is the expert when it comes to judging whether the colonies are thriving or not. While the biochemically trained scientist can only count the dead, extrapolate figures, and perhaps demonstrate pesticide residues in the laboratory, the beekeeper recognises from disoriented flight or abnormal brood behaviour that the colony is impaired. Knowledge of swarming behaviour likewise belongs to this realm. Beekeepers can therefore act preventively based on experiential knowledge, and they assume acts of care in prevention. They are the central actors in applying the ethical principle of precaution. What matters here is the wellbeing of the colony, not that of the individual bee (see, for instance, the German coinage of 'der Bien', the superorganism consisting of all the bees in a colony). In 2023, engineer Derek Mitchell made suggestions for major amendments in the construction of beehives, enhancing the colony wellbeing in cool temperatures. He was inspired by observing his girlfriend's operations in beekeeping.

#### Natural philosophy as a foundation of beekeeping ethics

If we understand ethics as the theory of right action, we must ask more deeply upon what kind of knowledge such right action is based. Here, the shimmering concept of 'nature' suggests itself – a concept that has the advantage of not being interpreted solely by experts such as scientists, but of being available to everyone. Every human being has a notion of nature, and in almost all cultures this notion is linked with renewal and sustenance. Thus, natural philosophy forms the basis of an ethics of beekeeping (Karafyllis & Friedmann 2017). In public perception, bees belong to those animals that - despite their sting - evoke positive feelings, and this is not due to honey alone. They are admired for their complex social and communicative behaviour; the study of the 'language of bees' even earned a Nobel Prize (Karl von Frisch). Yet, we rarely consider what our language about bees reveals: we speak of their 'work,' their 'ecosystem services,' their 'pollination function,' as if they existed solely in our service and had no value in themselves. Ethics therefore also requires a critique of language, for language entails cognition.

Unfortunately, even many environmental ethicists speak of 'ecosystem functions'. This is careless. Where we speak of systems, we imply control and regulation, as if nature were a machine. But this is not the case. And where 'functions' are invoked, two options are always lurking in the background – even with respect to the 'pollination function' of bees:

- To replace one biological bearer of functions with another, e.g. replacing the honeybee with the bumblebee in greenhouse strawberry cultivation.
- 2. To replace a biological bearer of functions with a technical surrogate, e.g. laboratory synthesis of artificial pollen, to be dispersed by aircraft.

This leads to a paradox: when beekeepers speak of a 'pollination crisis' and calculate it in monetary terms – how much harvest will be lost if bees die off – they may wish to account for the value of bees' labour to protect them. But because of the economic framing, they may in fact achieve the opposite. If pollination can be provided more cheaply by technical means (e.g. by robo-bees, see Gleadow, Hanan & Dorin 2019), there may be little incentive to keep bees for this service at all. Anyone who wishes to protect bees should therefore not primarily argue with pollination services if what they truly love and admire is the bee as a complex form of life.









The four stages of learning towards wisdom, titled as follows: 'Growth of human understanding: through comparison and differentiation of things (image top left); through the testimony of others (image top right, with 'stinging bees'); through instruction by those who have a trained understanding (image bottom left); through one's own insight (image bottom right). (*Kupferstich 1771-1774*, *Basedow 1774*)

#### The bee as a symbol of knowledge of nature and of learning with nature

In conclusion, I wish to point out that the bee is not only a symbol of work and diligence, but also of two other concepts: boundlessness (the openness of its way of life) and learning. Learning means continually transcending oneself and growing successfully – that is what is contained in the word 'Bildung.'

By this I do not primarily mean that we can learn *from* the bee – how complex its behaviour and communication are, and what a marvellous creature it is. This certainly adds to our admiration of nature. But what I wish to emphasise is that, in our dealings with bees, we can learn something about ourselves and about our relation to nature. Let me give two examples:

1. The poet-philosopher Vergil wrote in the *Georgics* (1st century BC) that the bees: 'in summer, mindful of the winter to come, spend toilsome days and garner their gains into a common store. For some watch over the gatherings of food, and under fixed covenant labour in the fields; some, within the confines of their homes [...]' (*Georgics IV*, p. 229, trans. H. Rushton Fairclough, Loeb Classical Library).

Beyond the allusion to perfect division of labour as a model for the Roman Empire, the text highlights the shared form of life, which unfolds 'under fixed covenant' – a law that we do not in fact know. We can only perceive this special community with reverence, observe it, and gratefully accept it as beneficial for ourselves. Vergil notes that bees contribute to a

broader perspective, as they are not restricted by human-made enclosures and maintain a degree of independence. They are cultural-natural animals: 'within the confines of their homes' of their artificial hives, yet also 'labour in the fields'. That bees have the fields they need is the responsibility of agriculture and all who contribute to it – from plant breeders and landscape planners to municipalities, farmers, and gardeners. Here, we find an entry point for a land ethic, such as Aldo Leopold proposed decades ago. In short: the bee colony symbolises community spirit and is thus relevant for ethics as a whole.

2. In Enlightenment pedagogy, the stages of learning were illustrated through learning with bees (not from them). An engraving in the Elementary Works for the Young and their Friends (Basedow, 1774) shows four stages of learning towards wisdom (see page 7).

Those who ignore the testimony of others – that is, of the experienced – about how to behave with bees, will suffer pain and must learn directly through their own bodies. But such a person will never reach the next stage: learning from those with a trained understanding, such as scientists. In this sense, the educational work of beekeepers is itself a contribution to the larger project of Enlightenment.

#### References

Basedow, J. B. (1774). Elementarwerke für die Jugend und ihre Freunde. Berlin & Dessau.

Beauchamp, T. L. & Frey, R. G. (ed.) (2011). *The Oxford Handbook of Animal Ethics*. Oxford: Oxford University Press.

Gleadow, R.; Hanan, J. & Dorin, A. (2019). Averting robo-bees: Why free-flying robotic bees are a bad idea. In: *Emerg Top Life Sci* 3 (6): 723-729.

Kallhoff, A.; Di Paola, M. & Schörgenhumer, M. (ed.) (2018). *Plant Ethics*. Concepts and Applications. London: Routledge.

Karafyllis, N. C. & Friedmann, G. (2020). Kein Honigschlecken: Bienen als 'Ökosystemdienstleister' und natürliche Mitwelt. In: Kirchoff, T. & Karafyllis, N. (ed.): *Naturphilosophie: Ein Lehr- und Studienbuch*. Tübingen: Mohr Siebeck, 292-302.

Mitchell, D. (2023). Honeybee cluster – not insulation but stressful heat sink. In: *Journal of the Royal Society Interface* 20 (208).

This is a translated, shortened and updated version of my text: Ethische Gesichtspunkte in der Imkerei (2019).

#### Bees, people and climate: Rethinking beekeeping as a social practice

Simon Meisch, Scott Bremer, Etienne Dunn-Sigouin and Manuel Hempel









Beekeeping offers a fascinating way to look at climate change, because it sits at the crossroads of ecology, culture, and livelihoods. We often hear about how warming temperatures and shifting weather affect bees and the plants they pollinate. But less attention has been given to how beekeeping itself – as a set of skills, tools, traditions, and relationships between people, bees, and landscapes – is adapting to these pressures.

oa per

Simon Meisch Senior Lecturer, University of Tübingen simon.meisch@uni-tuebingen.de

> Scott Bremer Research Professor University of Bergen, scott.bremer@uib.no

Etienne Dunn-Sigouin Senior Researcher Bjerknes Centre for Climate Research (Bergen) etdu@norceresearch.no

Manuel Hempel
PhD student
Bjerknes Centre for Climate
Research (Bergen)
mahe@norceresearch.no



In a systematic literature review, we brought together research from across the world to explore how beekeeping is changing in response to climate stress. We used social practice theory, which sees beekeeping not as an isolated technical task but as a practice made up of different elements: knowledge and skills, materials, cultural meanings, timing, and more-than-human relationships. These elements are constantly reshaped by climate challenges.

Climate change affects beekeeping both directly and indirectly. Rising temperatures, heatwaves, storms, and floods can kill colonies, damage hives, and reduce honey yields. Shifts in rainfall and flowering patterns disrupt the match between bee activity and food sources. Droughts limit nectar and pollen, while warmer winters allow pests and diseases to spread. On top of this, pesticide use, and land-use change compound the stress.

Beekeepers respond in varied ways, but adaptation goes far beyond technical fixes. Yes, they redesign hives, provide extra shade or food, or move colonies to better forage. But adaptation also involves acquiring new skills, changing how they understand risk, and re-negotiating the cultural meanings of beekeeping.

Take 'competence'. Climate change forces beekeepers to learn new ways of managing pests, feeding colonies, or practising transhumance – that is, moving hives to follow flowering cycles. It also means developing ecological knowledge, whether from generations of experience or from new technologies like sensors and weather apps. Learning often happens through families and communities of practice, but lack of formal training can limit adaptation.

Materials also shift. Hive types, frames, feed, shade structures and transport are all being adapted to withstand harsher conditions. Beekeepers establish 'bee pastures' with climate-resilient plants or turn to supplementary feeding when flowers fail. Honey itself, the key product, is under pressure, with lower yields pushing some beekeepers to change marketing strategies or risk over-exploiting colonies. Even the bees are seen as materials in a sense: breeding programmes seek strains more tolerant of heat or pests, though this raises ethical and ecological debates.

But bees are not mere materials. They are active partners. Climate change is reshaping their behaviour: shorter foraging flights in extreme heat, altered swarm-

ing times, earlier cleansing flights. They struggle more with pests when stressed, and forage longer for scarcer water and nectar. Meanwhile, plants flower at unpredictable times, or produce less nectar, disrupting the rhythm that once connected colonies to their landscapes. Beekeepers are drawn into this complex web, adjusting their practices to remain in tune with both bees and plants.

Timing itself is deeply altered. Beekeeping depends on seasonal rhythms: when colonies wake, when flowers bloom, when honey can be harvested. Climate change disrupts these rhythms — winters are shorter, flowering periods less predictable, pests more persistent. Beekeepers must reschedule inspections, treatments, feeding and harvesting, sometimes skipping honey extraction altogether to keep colonies alive. Some try to rebuild 'flower arches' by planting species with staggered flowering, or they move hives to follow irrigation cycles. Adaptation, then, is not just about materials and skills, but about re-synchronising with disrupted temporal patterns.

The cultural meanings of beekeeping also matter. In many societies, bees and honey are tied to religion, medicine, trade, or regional identity. For some, beekeeping is livelihood, for others a hobby or ecological mission. How one values beekeeping shapes how one perceives climate risks and which strategies feel acceptable. Hobbyists, for instance, may have more freedom to experiment than professionals whose income depends on stable yields. Feelings of helplessness are common, especially in poorer regions where financial margins are tight. Yet community spirit, intergenerational continuity, and the symbolic value of bees can also strengthen resilience.

Adaptation is uneven. Wealthier or more networked beekeepers can access new technologies, transport for transhumance, or land for bee pastures. Others may lack such options, leaving them vulnerable or forcing them to abandon beekeeping. Climate change therefore not only pressures bees but reshapes the social fabric of beekeeping communities.

Overall, the review shows that beekeeping is a climate-sensitive practice where ecological, technical, cultural, and social dimensions are intertwined. Studying how it adapts helps us understand the limits of adaptation: when too many links between its elements are broken, the practice itself may collapse.

But beekeeping also offers broader lessons for agriculture. It is small-scale yet deeply connected to wider food systems, through pollination and through its exposure to pesticides and land-use change. Seeing it as a social practice highlights how adaptation involves much more than technical tweaks. It is about reconfiguring knowledge, materials, relationships, and rhythms in ways that sustain both people and bees. To speak meaningfully about good and ethically responsible climate adaptation, we must understand these social practices, how they evolve, and what values they carry.

We argue that research on beekeeping and climate should be more interdisciplinary, blending ecological, agricultural, and social science perspectives. Too often, studies focus only on hive technologies or bee health, overlooking the practice as a whole. Social practice theory offers a useful lens not only for beekeeping but for other climate-sensitive activities. By examining how practices are reshaped, we can better support adaptation that is both technically effective and socially meaningful.

Beekeeping shows us that adapting to climate change is not only about inventing new tools, but about re-weaving the ties between humans, animals, and environments. Bees and their keepers remind us that resilience lies in relationships – and those relationships are being tested as never before.

#### References

Bremer, S., Meisch, S., Hempel, M., & Dunn-Sigouin, E. (2024). *Adapting seasonal beekeeping patterns in western Norway*. Time & Society, online first.



## EurSafe 2026: Agriculture and food systems The role of AI and digitalization

9-12 September 2026, Cappadocia University, Türkiye

The next EurSafe conference will take place in the extraordinary cultural landscape of Cappadocia, Türkiye. From 9-12 September 2026, scholars, practitioners, policymakers, and community leaders will gather to reflect on one of the most pressing issues of our time: the ethical implications of artificial intelligence (AI) and digitalization in agriculture and food systems.

Set against the backdrop of urgent climate action and transformative technological change, the conference examines how digital innovation can contribute to the development of sustainable, resilient, and equitable food systems. The latest Intergovernmental Panel on Climate Change report emphasizes the need for rapid transformation of agricultural practices to mitigate climate change and ensure global food security. At the same time, legal frameworks such as the European Union's AI Act emphasize the responsibility of ensuring that high-risk AI applications in agriculture align with ethical standards and societal values. EurSafe 2026 positions itself at this crossroads, offering a platform for critical dialogue on the intersection of technology and ethics in food and farming.

The conference welcomes contributions across several thematic areas, including:

- Dystopia and Utopia in Agriculture
   Future scenarios shaped by AI and digitalization in the context of climate change.
- Food Chain Innovation
   Enhancing efficiency, safety, and transparency through digital tools.
- Ethics and Law in AI Regulation
   Governing data use and AI responsibly in agriculture.
- Al in Livestock and Animal Health
   Exploring the benefits and risks of digitalization in animal farming.
- Farm Labor and Automation
   Addressing the social and ethical consequences of robotics and automation for agricultural workers.



Cappadocia, Turkey

Alongside these central themes, EurSafe 2026 also invites general contributions in areas such as animal ethics, environmental ethics, aquaculture, immigration and social equity in food systems, indigenous knowledge, and ethical food consumption. This broad scope ensures an inclusive discussion that connects diverse disciplines and perspectives.

In addition to the academic programme, EurSafe 2026 will as always host the EurSafe General Assembly Meeting, and participants will have the chance to join a half-day excursion in Cappadocia, discovering the region's unique natural and cultural heritage. Social events, workshops, and informal gatherings will further strengthen connections between participants.

By situating the conversation in Cappadocia – a place renowned for its resilience, creativity, and adaptation to a changing environment – the conference symbolically reflects its overarching mission: to foster ethical innovation in agriculture and food systems. Participants will have the chance not only to present their research

but also to engage in meaningful dialogue about the values, challenges, and responsibilities that must guide technological transformation.

EurSafe 2026 thus promises to be an intellectually stimulating and socially enriching gathering, bringing together voices from across disciplines and regions. By focusing on the ethical dimensions of AI and digitalization, the conference seeks to shape the future of food and farming in ways that respect human dignity, promote environmental sustainability, and strengthen social justice.

#### **Inaugural address**

#### Rachel Ankeny (WUR)

On September 19, Professor Rachel Ankeny gave her inaugural address at Wageningen University and Research. Rachel became chairholder of the Philosophy Group in July 2024, thereby strengthening the group's focus on philosophy of science in the life sciences.



She has internationally recognised research expertise and an impressive track record in philosophy and history of the biological and biomedical sciences, bioethics, and social and ethical studies of food and agriculture. In her work, she focuses on how science is practiced, how scientists collaborate and what values they bring to their research.

Drawing on an impressive career at the intersection of philosophy, history, and science studies, she argues that philosophy should walk alongside scientists, shaping questions, practices and impacts rather than commenting on these from their armchair. In her eyes, the role of philosophers is not simply to be critical, but to engage with scientists during processes of technology development. Philosophers can help researchers reflect on limits, intended beneficiaries and

system-level effects: 'In some cases these technologies are already here. The question is how they fit into the bigger picture, who they are useful for, and what the limits should be.' Moreover, she sees an important role for community involvement in the research process, be it farmers, policymakers, or citizens: 'The issues we look at require co-shaping and co-design with the community'. Interdisciplinarity and inclusivity are central to Rachel's work, and she is happy to see this reflected in the Philosophy Group's composition. Before her appointment at Wageningen University and Research,

she was Deputy Dean Research in the Faculty of Arts at the University of Adelaide, Australia, and she brings important leadership experience as well as an international network and fresh energy to Wageningen.

Bernice Bovenkerk

Quotes in the text were first published in Eugenia León: Philosophy at a life sciences university: Constructive, collaborative and outward-facing. WUR.

### PhD completed

#### **Tristan Katz**

In this PhD thesis, Katz investigates how wildlife managers should respond to the suffering of wild animals. Most wild animals die young while experiencing great suffering, not due to human activity but due to natural, competitive evolutionary pressures. This raises the question of whether wildlife managers should intervene to reduce this suffering. The thesis addresses three key uncertainties: whether we have a duty to help wild animals, whether interventions can succeed given ecological complexity, and how animal welfare should be balanced against conservation values. This thesis uses a pragmatist methodology that employs different ethical frameworks to address different questions and makes three main contributions. Part one applies a Principlist methodology to show that the widely-shared principles of beneficence, non-maleficence, autonomy, and justice



support a duty to mitigate wild animal suffering. Part two adopts a welfare-consequentialist lens to examine the risks of intervening, arguing that while the suffering of wild animals is urgent, the risk of causing unintended and irreversible changes demands a precautionary approach, and makes several suggestions for what precautionary interventions might allow. Part three turns to conservation practice, building off the approach of Compassionate Conservation to show that practitioners will face a tension between compassion and conservation, and suggests that wildlife managers should seek win-win solutions.

The thesis concludes that addressing wild animal suffering in wildlife management is both morally imperative and practically achievable through carefully designed interventions and a precautionary approach that balances welfare benefits against ecological risks.

#### References

Katz, Tristan (2024). Taking natural harms seriously in compassionate conservation. Biological Conservation 299: 110791.

Katz, Tristan David (2023). Widely Agreeable Moral Principles Support Efforts to Reduce Wild Animal Suffering. *Journal of Applied Animal Ethics Research* 5(2): 221-246.

Katz, Tristan, and Ivo Wallimann-Helmer (2022).

18. Challenging our thinking about wild animals with common-sense ethical principles. In:

Transforming food systems: ethics, innovation and responsibility, pp. 126-131. Wageningen Academic Publishers.

Tristan Katz, Postdoc, University of Fribourg (CH), tristan.katz@unifr.ch

## events

#### From the executive committee



On 16 September, we held a short online meeting as a board. The main items on the agenda were the next EurSafe Congress, finances, membership and the planning of the online General Assembly.

Regarding the latter, you will receive an invitation to the online General Assembly in the coming days for later this year. The reason for organising this meeting is the formal requirement to present and obtain approval for the 2024 financial report. However, we would also like to take this opportunity to discuss the role that EurSafe could play in supporting early career scholars and offering them opportunities to play a more active role in our society.



Cappadocia University in Ürgüp, Turkey

We also discussed the update on the EurSafe 2026 conference with Sinan Akilli from Cappadocia University. Further details about the congress can be found in the dedicated section in this newsletter on the congress, which is scheduled to take place from 9 to 12 September 2026 in Cappadocia. My role here is simply to encourage you to submit your abstracts before 1 December!

#### eursafe2026.kapadokya.edu.tr

On behalf of the Executive Board,

Franck Meijboom

#### **Conferences and symposia**

#### 11 NOV 2025

Reinventing humanism beyond the human: Philosophical foundations for a multispecies politics of hope

University of Vienna, Vienna, Austria website

#### 27-30 NOV 2025

9. Österreichischer Tierrechtskongress

Vienna, Austria website

#### 10 DEC 2025

The animal I see the person I am

University of Vienna, Austria website

#### 15-16 DEC 2025

Do animals understand death?

Ruhr Universität Bochum, Germany website

#### 13-14 JAN 2026

Philosophy of Agency in a More-Than-Human-World

Faculty of Philosophy, University of Santiago de Compostela, Spain website





#### **President**

#### Franck Meijboom

Ethics Institute, Utrecht University, the Netherlands f.l.b.meijboom@uu.nl

#### **Vice-presidents**

#### **Bernice Bovenkerk**

Philosophy Group, Wageningen University, the Netherlands bernice.bovenkerk@wur.nl

#### **Herwig Grimm**

Messerli Research Institute University of Veterinary Medicine Vienna, Austria herwig.grimm@vetmeduni.ac.at

#### **Secretary**

#### Teea Kortetmäki

University of Jyväskylä, Finland teea.kortetmaki@jyu.fi

#### **Treasurer**

#### Joost van Herten

Royal Veterinary Association of the Netherlands, the Netherlands

#### **Members**

#### **Diana Dumitras**

University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Romania ddumitras@usamvcluj.ro

#### Leire Escajedo

University of the Basque Country, Spain

leire.escajedo@ehu.es

#### Simon Meisch

University of Tuebingen, Germany <a href="mailto:simon.meisch@uni-tuebingen.de">simon.meisch@uni-tuebingen.de</a>

#### Bjørn Myskja

Norwegian University of Science and Technology, Trondheim, Norway bjorn.myskja@ntnu.no

#### **Per Sandin**

Swedish University of Agricultural Sciences, Uppsala, Sweden per.sandin@slu.se

#### Ivo Wallimann-Helmer

University of Zurich, Switzerland <a href="ivo.wallimann-helmer@unifr.ch">ivo.wallimann-helmer@unifr.ch</a>

#### **Ariane Willemsen**

Federal Ethics Committee on Non-Human Biotechnology (ECNH), Switzerland ariane.willemsen@bafu.admin.ch

#### **EurSafe News**

#### Chief-editor

#### Simon Meisch

University of Tuebingen, Germany <a href="mailto:simon.meisch@uni-tuebingen.de">simon.meisch@uni-tuebingen.de</a>

#### Editorial Board

#### **Raymond Anthony**

University of Alaska Anchorage, US <a href="mailto:ranthon1@uaa.alaska.edu">ranthon1@uaa.alaska.edu</a>

#### Mariska van Asselt

Aeres University of Applied Sciences Dronten, the Netherlands m.van.asselt@aeres.nl

#### **Bernice Bovenkerk**

Wageningen University, the Netherlands

bernice.bovenkerk@wur.nl

#### **Samuel Camenzind**

Department of Philosophy University of Vienna, Austria samuel.camenzind@univie.ac.at

#### **Jes Harfeld**

Aalborg University, Denmark <a href="harfeld@ikl.aau.dk">harfeld@ikl.aau.dk</a>

#### Hanna Schübel

UniFR\_ESH Institute,Switzerland hanna.schuebel@unifr.ch

#### **Svenja Springer**

Messerli Research Institute, Austria svenja.springer@vetmeduni.ac.at

#### Lavour

#### Luc Dinnissen

studio ds

Nijmegen, the Netherlands www.studiods.nl

## contact

